Friday 28 October 2016

Technological singularity

                    Technological singularity


The technological singularity also, simply, the singularity is the hypothesis that the invention of artificial superintelligence will abruptly trigger runaway technological growth, resulting in unfathomable changes to human civilization.According to this hypothesis, an upgradable intelligent agent (such as a computer running software-based artificial general intelligence) would enter a 'runaway reaction' of self-improvement cycles, with each new and more intelligent generation appearing more and more rapidly, causing an intelligence explosion and resulting in a powerful superintelligence that would, qualitatively, far surpass all human intelligence. Science fiction author Vernor Vinge said in his essay The Coming Technological Singularity that this would signal the end of the human era, as the new superintelligence would continue to upgrade itself and would advance technologically at an incomprehensible rate.

The first use of the term "singularity" in a technological context was attributed in 1958 to John von Neumann. In the same year, Stanislaw Ulam described "ever accelerating progress of technology and changes in the mode of human life, which gives the appearance of approaching some essential singularity in the history of the race beyond which human affairs, as we know them, could not continue".In the 1990s, Vinge popularized the concept, linking it to I. J. Good's "intelligence explosion", and predicting that a future superintelligence would trigger a singularity.

Ray Kurzweil predicts the singularity to occur around 2045 whereas Vinge predicts some time before 2030. At the 2012 Singularity Summit, Stuart Armstrong did a study of artificial general intelligence (AGI) predictions by experts and found a wide range of predicted dates, with a median value of 2040.

                                          Manifestations

Intelligence explosion
I. J. Good speculated in 1965 that artificial general intelligence might bring about an intelligence explosion. Good's scenario runs as follows: as computers increase in power, it becomes possible for people to build a machine that is more intelligent than humanity; this superhuman intelligence possesses greater problem-solving and inventive skills than current humans are capable of. This superintelligent machine then designs an even more capable machine, or re-writes its own software to become even more intelligent; this (ever more capable) machine then goes on to design a machine of yet greater capability, and so on. These iterations of recursive self-improvement accelerate, allowing enormous qualitative change before any upper limits imposed by the laws of physics or theoretical computation set in.



Emergence of superintelligence

ernor Vinge and Ray Kurzweil define the concept in terms of the technological creation of superintelligence. They argue that it is difficult or impossible for present-day humans to predict what human beings' lives would be like in a post-singularity world.


Plausibility

Many prominent technologists and academics dispute the plausibility of a technological singularity, including Paul Allen, Jeff Hawkins, John Holland, Jaron Lanier, and Gordon Moore, whose Moore's Law is often cited in support of the concept.



Claimed cause: exponential growth


The exponential growth in computing technology suggested by Moore's Law is commonly cited as a reason to expect a singularity in the relatively near future, and a number of authors have proposed generalizations of Moore's Law. Computer scientist and futurist Hans Moravec proposed in a 1998 book[17] that the exponential growth curve could be extended back through earlier computing technologies prior to the integrated circuit.

Kurzweil postulates a law of accelerating returns in which the speed of technological change (and more generally, all evolutionary processes) increases exponentially, generalizing Moore's Law in the same manner as Moravec's proposal, and also including material technology (especially as applied to nanotechnology), medical technology and others.[19] Between 1986 and 2007, machines' application-specific capacity to compute information per capita roughly doubled every 14 months; the per capita capacity of the world's general-purpose computers has doubled every 18 months; the global telecommunication capacity per capita doubled every 34 months; and the world's storage capacity per capita doubled every 40 months.

Kurzweil reserves the term "singularity" for a rapid increase in intelligence (as opposed to other technologies), writing for example that "The Singularity will allow us to transcend these limitations of our biological bodies and brains ... There will be no distinction, post-Singularity, between human and machine".[21] He also defines his predicted date of the singularity (2045) in terms of when he expects computer-based intelligences to significantly exceed the sum total of human brainpower, writing that advances in computing before that date "will not represent the Singularity" because they do "not yet correspond to a profound expansion of our intelligence.

No comments:

Post a Comment